データ処理・活用、AI
機械学習において、繰り返し処理を行い目標となるモデルに近づけることを「学習」といい、「教師あり学習」と「教師なし学習」は、共に機械学習の方法です。
教師あり学習とは、入力データに対して正しい答え(ラベル)を与える学習方法です。教師あり学習は、一連の入力データとそれらに対応する正しい答えを受け取り、教師ありプログラムの出力と正しい答えを比較してエラーを検出します。そして、自らプログラムに改良を加えて学習していきます。一方、教師なし学習では、入力データに対する正しい答えは与えられません。教師なし学習では、プログラムが答えを探してデータの内部に何らかの構造を見つけ出し、入力データの意味を突き止めます。
一般に、教師あり学習は過去のデータから将来を予測することができるため、クレジットカード取引に不正の疑いがある場合や、保険金請求を行いそうな保険契約者を特定する目的でなどで使われます。
教師なし学習は、ニューラルネットワークの一種である自己組織化マップ(SOM)や、主成分分析、画像圧縮技術などに利用されています。